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Spatial characteristics of white mould epidemics and the
development of sequential sampling plans in Australian
bean fields
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To improve sampling efficiency and precision in the assessment of white mould (caused by Sclerotinia sclerotiorum) disease
incidence on bean (Phaseolus vulgaris), the spatial characteristics of epidemics were characterized in 54 linear transects in 18
bean fields during 2008-2010 in northern Tasmania, Australia. The incidence of diseased pods and plants was assessed prior
to harvest. Distributional and correlation-based analyses indicated the incidence of diseased pods was characterized by a lar-
gely random pattern at the individual plant scale, with some patches of similar disease levels on pods occurring at a scale of
1:5 m or greater. Collectively, these results suggested epidemics may be dominated by localized sources of inoculum. Sequen-
tial sampling approaches were developed to estimate or classify disease incidence above or below provisional thresholds of
3, 5 and 15% incidence on pods near harvest. Achieving prespecified levels of precision by sequential estimation was possi-
ble only when disease incidence on pods was greater than approximately 4% and sampling was relatively intense (i.e. 10
pods evaluated on each of at least 64 plants). Using sequential classification, correct decisions on disease status were made in
at least 95% of independent validation datasets after assessment of only 10-1-15 plants, depending on classification thresh-
old and error rates. Outcomes of this research provide the basis for implementing more efficient sampling and management
strategies for this disease in Australian fields.
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Introduction

White mould (Sclerotinia sclerotiorum) causes substan-
tial annual losses of bean (Phaseolus vulgaris) production
worldwide (Boland & Hall, 1987). The disease may
affect all aerial plant parts and can reduce the number
and size of pods, cause pods to rot and kill entire plants
(Wong, 1978). Early symptoms include water-soaked
areas on stems, leaves or pods, which develop into soft,
pale-brown lesions. White cottony mycelia are then
formed on lesions, and as the tissue senesces, mycelial
mounds are formed which mature into hard, melanized,
black sclerotia (approximately 5-10 mm long) which
allow the fungus to survive in a dormant state for periods
of months or years (Willetts & Wong, 1980; Koike ez al.,
2007). Moreover, infection of the stem can cause weak-
ening and result in losses through lodging (Boland &
Hall, 1987).

Sclerotinia sclerotiorum has a wide host range,
including crops routinely used in rotation with bean in
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Tasmania, Australia (and elsewhere), including carrot,
potato, pea, alkaloid poppy and pyrethrum. Several weed
species commonly encountered in bean fields are also
susceptible hosts of this fungus (Wong, 1978; Boland &
Hall, 1988; McDonald & Boland, 2004). Disease
outbreaks in these crops and weeds can contribute to
increases in inoculum density over time. The ability of
S. sclerotiorum to survive for long periods in soil as
sclerotia (Willetts & Wong, 1980; Koike et al., 2007),
combined with the ability of sclerotia to produce large
quantities of windborne ascospores (Schwartz &
Steadman, 1978; Phillips, 1987; Clarkson et al., 2004),
the broad host range of the pathogen, and the absence of
high levels of host plant resistance in bean, make white
mould particularly difficult to control.

Sclerotia of S. sclerotiorum can undergo either myceli-
ogenic or carpogenic germination (Abawi et al., 1975;
Abawi & Grogan, 1979). In the white mould-bean
pathosystem, myceliogenic germination of sclerotia is
believed to be of minor concern in Australian bean crops.
Most yield losses are attributed to carpogenic germina-
tion and subsequent infection of senescent flowers and
withered leaves (Schwartz & Steadman, 1978; Wong,
1978; Phillips, 1987; Clarkson et al., 2004). Ascospores
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require high humidity and nutrients from senescent or
damaged tissue to germinate and initiate infection
(Phillips, 1987; McCartney & Lacey, 1991). In beans,
senescing petals are particularly susceptible to infection.
In several pathosystems, carpogenic germination of
S. sclerotiorum has been modelled to be synchronous
with the availability of host tissue (i.e. flower develop-
ment) (Abawi et al., 1975; Abawi & Grogan, 1979;
Boland & Hall, 1988; Pethybridge et al., 2010). How-
ever, temperature, water potential and light interception
have been documented as the most important factors reg-
ulating carpogenic germination (Schwartz & Steadman,
1978; Huang & Kozub, 1993; Turkington & Morall,
1993; Clarkson et al., 2004; McDonald & Boland, 2004).
Secondary spread occurs when infected petals fall
through the canopy and attach to pods, leaves or stems.
Mycelia can then grow from the petals and infect healthy
plant parts, such as stems and pods (Abawi et al., 1975;
Abawi & Grogan, 1979).

Current management of white mould on beans relies
mainly on the prophylactic use of fungicides at the flower-
ing stage. The aim of this programme is to prevent initial
ascospore infection of senescing flowers and conse-
quently to reduce secondary infection of healthy plant
tissues. The decision to implement a management strat-
egy based on an action threshold requires a sampling pro-
cedure that is capable of accurately estimating disease
incidence or classifying incidence as being above or below
a specified value (Binns ez al., 2000). Sequential sampling
methods have been developed and used widely in ento-
mology to minimize time and costs associated with
assessing arthropod pest density (e.g. Hoffman ef al.,
1996), but have been less used in assessing plant disease.
Examples of the latter include common maize rust (Dil-
lard & Seem, 1990), yellow (stripe) rust of wheat (Gaunt
& Cole, 1992), phomopsis leaf blight of strawberry
(Turechek et al., 2001), botrytis leaf blight of onion (Vin-
celli & Lorbeer, 1987) and powdery mildew of hop (Gent
et al., 2007a,b). The development of a sequential sam-
pling plan requires prior knowledge of the spatial pattern
of disease. Sequential sampling can be of two forms: (i)
sequential estimation, in which it is necessary to estimate
the level of disease at a particular level of precision, or (ii)
sequential classification, which seeks to determine
whether disease is above or below a critical value impor-
tant for disease management. At disease incidences higher
or lower than the critical value, disease can be classified
with fewer samples than when the incidence is near the
critical value. In general, sequential sampling plans based
on classification require less intensive sampling than
those based on estimation because precision is not con-
trolled at all levels of disease incidence and sampling
ceases when enough individuals have been assessed to
simply classify disease status (Madden et al., 1996, 2007;
Madden & Hughes, 1999; Binns et al., 2000).

In some cases with plant diseases, sequential sampling
has been used to initiate fungicide applications (Vincelli
& Lorbeer, 1987). However, in the case of white mould
of bean, the use of a sequential sampling plan for schedul-

ing fungicides for disease management may be of limited
value. In this pathosystem, fungicides need to be applied
at flowering, some weeks prior to the onset of symptoms
on plants. Similarly, treatment of pods with fungicides
may be less efficacious than treatment of flowers, and
treatment of pods may lead to an inadequate withholding
period prior to harvest. Furthermore, the latent period
between infection and disease expression may mean that
at the point of detection, the disease has already increased
to the point that economic management is not possible
(Malloy, 1993).

The major potential benefit of a sequential sampling
plan for white mould in bean is improving the efficiency
of assessing disease incidence within fields for processors
to determine if disease incidence is too high for a field to
be harvested. In this study, the objectives were to quantify
the spatial patterns of white mould epidemics in Austra-
lian bean fields, and to use this information to derive
sequential sampling plans for estimation and classifica-
tion of the incidence of pods with white mould.

Materials and methods

Field trials and data collection

The incidence of white mould on bean pods was quanti-
fied in surveys of 18 commercial bean fields on undulating
terrain in northern Tasmania, Australia during 2008-
2010. A total of five, six and seven fields were assessed in
2008, 2009 and 2010, respectively. The incidence of dis-
eased pods was assessed using a cluster sampling design,
which is necessary to assess aggregation with disease inci-
dence data (Hughes et al., 1996). For each field, two to
four rows were selected, and a linear transect was estab-
lished on the selected rows. Each transect was 50 m long
and disease incidence was assessed in quadrats (sampling
units) 0-5 m long by one row wide, for a total of N = 100
sampling units per transect. From each sampling unit,
n = 10 pods (individuals) were selected randomly and
assessed for signs and symptoms of white mould. Thus,
there were a total N7 pods evaluated per transect. Esti-
mated disease incidence (p) was then calculated as
p =>"x;/ > n;, where x; is the number of diseased pods
and 7; is the number of pods sampled in the ith sampling
unit. Each transect was considered a dataset, resulting in
a total of 54 datasets for model development (herein
referred to ‘model development datasets’).

An additional 109 bean fields were assessed for white
mould during 2009 and 2010. These datasets were con-
sidered independent ‘model validation datasets’ and were
used to assess the performance of the sequential sampling
plans described below. In these assessments, fields were
assessed for white mould as close to commercial harvest
as practical, which was generally 2-10 days before har-
vest. When assessing disease incidence in these fields,
pods and plants at 64 points in the field were assessed for
white mould. The 64 sampling points consisted of four or
five transects each with 12-16 relatively equally spaced
points that spanned the length of the field. At each
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sampling point, 20 pods were selected arbitrarily from
one to two bean plants. This was analogous to the com-
mercial protocols used by processors to estimate disease
incidence within fields.

Spatial analyses

Distributional analyses

The beta-binomial and binomial distributions were fitted
to the incidence of diseased pods and plants using the
computer program BeD (Madden & Hughes, 1994).
A good fit to the binomial distribution is an indication of
a random pattern of diseased pods, whereas a good fit to
the beta-binomial distribution is an indication of an
aggregated pattern (Madden & Hughes, 1995; Madden
etal.,2007). A log-likelihood ratio test was conducted to
determine whether the data was a better fit to the beta-
binomial distribution or the binomial distribution. The
C(o) test also was used to test whether aggregation in the
distribution of diseased pods could be described ade-
quately by the beta-binomial distribution. Since 20 pods
per sampling unit were assessed for white mould in the
model validation datasets, 10 pods were selected ran-
domly from among the 20 pods assessed post hoc in an
Excel spreadsheet before conducting distributional anal-
ysis on the model validation datasets.

The degree of aggregation of disease incidence was
quantified by the heterogeneity parameter 6 of the beta-
binomial distribution, which is a measure of spatial heter-
ogeneity of disease per sampling unit (Madden &
Hughes, 1995; Madden et al., 2007). The index of
dispersion (D) was calculated by dividing the observed
variance of diseased pods (vops) by the theoretical
variance for a binomial distribution (vpi,), where
Vobs = [ 30 (xi = pm)’] /(N = 1) and vy = np(1 — p)
and x;, p, n and N are as defined previously. When 0 = 0
or D = 1, the pattern of diseased pods is interpreted as
random, with aggregation indicated when D > 1or 0 > 0
and the degree of aggregation directly proportional to the
magnitude of the statistic. D has a chi-square distribu-
tion, and was used to test a null hypothesis of a random
distribution of disease incidence with N — 1 degrees of
freedom (Madden & Hughes, 1995).

Binary power law analyses

The binary power law expresses the relationship between
the variance of a theoretical variance of binomial (ran-
dom) pattern of disease incidence and an observed vari-
ance (Hughes & Madden, 1992). When a large number
of datasets are collected, the relationship between these
variances provides a convenient means to characterize
aggregation of disease incidence over multiple fields and
time (Madden et al., 2007; Gent et al., 2008). The model
was fitted to the observed and binomial variances through
the log-transformed relationship

In (Uobs) =In (Ax) +b1In (Ubin) (1)

where vg,s and vy, are as defined above. When A, =1
and b = 1, Eqn 1 indicates a random pattern of disease
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incidence that can be represented by the binomial dis-
tribution. When A, > 1 and b = 1, disease incidence
has an aggregated pattern that is not dependent on p;
values of b > 1 indicate that aggregation is systemati-
cally related to p. Ordinary least squares regression
was used to estimate the intercept and slope parame-
ters using PROC REG in SAS version 9.2 (SAS Institute).

Correlation-based spatial analyses

Correlation-based spatial analyses for the incidence of
diseased pods were conducted using autocorrelation and
both ordinary and median runs analyses. First- and sec-
ond-order autocorrelation statistics were calculated to
quantify the degree of similarity of disease incidence
between sampling units along a transect. Before autocor-
relation coefficients were calculated, the data were trans-
formed using the Haldane transformation [In(y/(1 — y)],
where y = (x + 0:5)/(n + 1) and x is the number of dis-
eased pods in a sampling unit. This transformation avoids
taking the logarithm of 0 values or dividing by 0. Auto-
correlation analyses were performed in Minitab version
15 (Minitab, Inc.).

Ordinary and median runs analyses were performed to
characterize larger-scale patterns of diseased pods among
sampling units in a transect (Madden et al., 1982). For
ordinary runs analysis, a sampling unit was assigned a
value of 1 if at least one diseased individual was observed
in the sampling unit and a 0 otherwise. In median runs
analysis, the median incidence of disease was calculated
for each dataset. Sampling units were then coded as 1 or 0
if the incidence of diseased pods was above or below the
median for that dataset, respectively. A run was defined
as a succession of one or more sampling units with similar
disease status (non-diseased or diseased). Runs and asso-
ciated tests of significance were calculated in Minitab.

Sequential sampling curves

Sequential estimation

A full explanation of the methods and theory for sequen-
tial sampling is given in the literature citations below (e.g.
Madden et al., 1996) and hence only a brief explanation
is given here. Binary power law parameters estimated
from the model development datasets were used in the
development of sequential estimation models. Precision
was expressed in terms of the coefficient of variation,
C = SEp/p, where SE is the standard error. The SE of p
was expressed in terms of the binary power law para-
meters as:

alp(1 - p)’/N 2)

where a = A,nb2.

In sequential sampling for estimation, the cumulative
number of diseased pods over N sampling units, Ty, is tal-
lied after each sampling unit is assessed. Sampling ceases
when Ty reaches or exceeds a threshold value, referred
to as the stop limit, which is defined by a, b, n, N and C.
Disease incidence is then calculated as p = Ty/nN.
The stop lines can be calculated exactly for a binomial
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distribution (i.e. 0 = 0) or approximated numerically
when disease is aggregated and the degree of aggregation
varies systematically with disease incidence (i.e. values of

b > 1)by:
=T (N = T)" = (C/a)yr® PNP1 - (3)

where 7y is a function of Ty. A Mathcad (Mathsoft
Inc.) worksheet developed by Turechek er al. (2001)
was used to solve Eqn 3 iteratively for Ty when N = 1
to 500 and C = 0-1, 02 and 0-3 as explained previ-
ously (Gent et al., 2007a,b).

Sequential classification

Statistical methods used for development of the sequen-
tial classification models were based on a modified ver-
sion of Wald’s sequential probability ratio test (SPRT),
as explained in depth by Madden & Hughes (1999).
For sequential classification, p; = (pg + p1)/2 is defined
as some critical value of disease incidence, which in this
study was the threshold for processor rejection of beans
as a result of white mould. The parameters pg and p4
represent the lower and upper boundaries of disease
incidence such that, when the true incidence of disease,
D, is equal to or less than py, the field is classified cor-
rectly at least 100(1 — 2)% of the time; and when the
true incidence of disease is equal to or greater than py,
the field is classified correctly at least 100(1 — )% of
the time. In practice, the resulting classifications are
interpreted as a test of the null hypothesis Hy: p < p;
against the alternative hypothesis Hy: p > p,, respec-
tively. A type I error is made when the true disease inci-
dence, p, is incorrectly classified as greater than the
critical value, p,. A type II error is made when p is
incorrectly classified as less than p,. The rate of these
two errors is expressed by the operating characteristic
(OC; explained thoroughly in Binns et al., 2000),
which is defined as the probability of accepting the
null hypothesis given the true value of p. The
OC =1 — (type I error rate) when p < p,, and is the
type Il error rate when p > p,. The OC of a perfect sam-
pling plan is 1 when p <p, and 0 when p > p,; the
steepness of an OC provides an indication of the error
rate of a sampling plan. Plots of average sample number
(ASN) versus p are also used to evaluate the properties
of sequential classification sampling plans. The ASN is
the expected number of sampling units that need to be
examined in order to accept or reject the null hypothesis
for any true value of p. The OC and ASN provide the
expected (average) values over many samplings, and
not necessarily the performance of a sampling plan for
an individual field. A steep OC and low ASN are desir-
able for sequential sampling because these indicate low
error rates and efficient sampling plans.

With sequential classification, two stop lines are calcu-
lated to represent po and py. The exact calculation of stop
lines for the SPRT is not possible for data described by the
beta-binomial distribution, but approximate formulae
are available (Madden & Hughes, 1999). The general
formula for stop lines is:

ig +suN < Ty < i1 +suN 4)

where sn is the common slope of the stop lines, and iy
are iy are intercepts of the lower and upper stop lines,
respectively. Intercept terms are defined by a, b, po, p1
and error parameters analogous to type I () and type
II (B) errors (Madden & Hughes, 1999; Turechek
et al., 2001).

In this study, sequential classification thresholds were
based on three levels of p,: 0-03 (po = 0-01, p; = 0-05);
0-05 (po =003, py=007); and 015 (po= 0-088,
p1 = 0-214). These values of p, were selected based upon
processor rejection thresholds for white mould of
approximately 5% incidence. The sampling plan with
P, = 0:03 would be a conservative approach to ensuring
that most fields would be classified as <0-05. The value of

. = 0-15 was derived from a regression equation describ-
ing the relationship between in-field disease incidence
assessments and those of the co-operating processor
(y = 032x + 0174, where y = disease incidence as
estimated by the processor and x = disease incidence
estimated during field surveys; # = 32 fields; R* = 0-73).
In these studies, p = 0-15 estimated from the surveys
corresponds roughly to p = 0-05 as estimated by the pro-
cessor. Each of these threshold values were evaluated at o
and f error rates of 0-05 and 0-10. Thus, six sampling
plans were developed and evaluated by plots of OC
and ASN versus p. OC and ASN were calculated by
MonteCarlo simulations using a Fortran program devel-
oped by J. P. Nyrop and modified by L. V. Madden (Tur-
echeketal.,2001).

Sampling plan validation by simulated sampling

Sequential estimation

Validation is an important aspect of developing sampling
plans to ensure they perform as desired during routine
use. Sampling plans were validated with the 109 indepen-
dent validation datasets by simulated sampling using a
Minitab macro (described by Turechek et al., 2001 and
Gent et al., 2007a). For a given dataset, the sampling
units were entered into the macro in the same order they
were collected in the field. The macro simulated sampling
of diseased pods collected from the sampling units, and
tallied the cumulative number of diseased pods until the
cumulative number of diseased pods exceeded that of
the model Ty calculated from Eqn 3. Estimates of p, the
achieved C, and the achieved N were then calculated.
Datasets where incidence of disease was 0 were not used
for determining the achieved C. The data were summa-
rized in box plots and the distribution of the median value
of the difference between the true and achieved p,
achieved C, and N were compared by the nonparametric
sign test in Minitab (Ryan et al., 2005).

Sequential classification

The six sequential classification sampling plans selected
after MonteCarlo simulation were evaluated by simu-
lated sampling of the model validation datasets as
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described for sequential estimation. Stop lines were calcu-
lated based on either the binomial distribution or beta-
binomial distribution. To determine if a correct decision
for a dataset was made, it was assumed that the observed
p from all 64 sampling units in a field represented the
‘true’ p for that field. The true value of p for a dataset was
compared with the hypothesized p, to determine whether
to reject the Hy in favour of the H;. The decision based on
results of the simulated sequential classification was com-
pared to the correct decision for the field, in order to cal-
culate type I and type II error rates. A type I error was
recorded if mean disease incidence was incorrectly classi-
fied as greater than p;, and a type Il error was recorded if
mean disease incidence was incorrectly classified as less

thanp,.

Sampling plan evaluation by bootstrapping

Sequential estimation

Evaluation of the sequential sampling plans was also con-
ducted by bootstrap evaluation of 12 datasets that
encompassed the range of p observed among the model
development datasets. The 54 model development data-
sets were classified into four disease incidence categories
that spanned the range of disease incidence observed:

0-02<p<0-04,005<p<0-080-08<p<0-16,
andp > 0-16.

Three datasets were selected randomly from each dis-
ease incidence class for bootstrap evaluation. For a
given bootstrap simulation, sampling units (7 = 10
pods from a quadrat) were sampled randomly one at a
time, with replacement, from among all sampling units
in a transect. Predicted stop limit curves for sequential
estimation were determined according to Eqn 3 with
C =01 and C = 0-2, and binary power law parameters
a=0194 and b = 1-045. Bootstrap analysis was con-
ducted using a macro executed in Minitab to calculate
the achieved C, the difference between the p of the
dataset (true p) and achieved p using sequential sam-
pling for estimation, and the achieved N for each of the
12 datasets. A rule was implemented that a minimum
of 10 sampling units were collected before sampling
ceased to ensure a representative sample was collected.
The bootstrap evaluation was conducted 100 times for
each dataset and specified values of C.

Sequential classification

The six sequential classification sampling plans were
evaluated by bootstrap simulation, as described above
for sequential estimation. Stop lines were determined
using Eqn 4. Sampling ceased when the cumulative num-
ber of diseased pods exceeded the upper or lower stop
lines of the model, or the dataset was sampled fully.
Again, a minimum of 10 sampling units were collected
before sampling ceased to ensure a representative sample
was collected. The bootstrap simulation was conducted
100 times for each dataset and specified values of p,, po,
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p1, o and f, and achieved OC and ASN were then calcu-
lated.

Results

Disease incidence

The incidence of pods with white mould determined from
the disease surveys ranged from 2:8% to 23-1% among
fields assessed, with a median of 8:4%. Among the model
validation datasets, disease incidence on the pods ranged
from 0% to 13-8 % with a median of 0-2%.

Spatial analyses

Distributional analyses

All spatial analyses, at the scale of individual sampling
units, indicated that disease incidence was slightly aggre-
gated in the model development datasets (Fig. 1; Table 1).
The log-likelihood ratio test was significant for 83% of
the datasets, indicating that the beta-binomial distribu-
tion provided a better fit to the data than the binomial
(random) distribution. Similarly, the C(«) test indicated
that the beta-binomial distribution provided a better fit
than the binomial distribution for 93% of datasets. The
frequency distribution of the heterogeneity parameter 0
was highly right-skewed and ranged from 0-0042 to 0-37
with median 0-10, which indicated a low degree of aggre-
gation (Fig. 1b; Table 1). The frequency distribution of
the index of dispersion, D, ranged from 1-05 to 3-48 with
median 1-80 (Fig. 1c). In 91% of the datasets D was
greater than 1 (suggesting significant aggregation)
according to a chi-square test.

In the model validation datasets, disease incidence was
randomly distributed on pods within sampling units. The
heterogeneity parameter ranged from 0 to 0-27 with med-
ian 0, in datasets where p > 0 (Fig. 2b). The index of dis-
persion ranged from 0-69 to 2:91, with median 1,
indicating a random distribution of disease incidence
(Fig. 2¢).

Binary power law analyses

The binary power law provided a reasonable fit to the
datain 2008 and 2009 (R = 0-82 and 0-84, respectively),
but a poor fit in 2010 (R? = 0-45; Fig. 3a). In each year,
and averaged over all years, the intercept estimates were
significantly greater than 0, but the slope parameter esti-
mates were not significantly different from 1 (Table 2).
This indicated that the incidence of diseased pods was
aggregated (intercept greater than 0), but the degree of
heterogeneity was independent of disease incidence
(slopeequal to 1).

In the model validation dataset on pods, disease inci-
dence was significantly more aggregated than the model
development datasets. The estimated parameters for the
intercept and slope terms were significantly greater than 0
and 1 respectively, indicating aggregation that was sys-
tematically related to p (Table 2; Fig. 3b).
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Table 1 Tests of aggregation and spatial pattern of incidence of bean pods with white mould (Sclerotinia sclerotiorum) sampled from commercial bean

fields in Tasmania, Australia during 2008-2010

Variance tests®

Median values® Runs analysis’

Incidence® 7° LRS® Cla) D 0 D 7 Median Ordinary
>0-02-0-04 3 1-00 1-00 1-00 009 179 0-06 033 0-33
>0-04-0:08 23 074 091 0-87 006 154 008 026 026
>0-08-0-16 24 092 096 096 013 2:07 0-24 043 0-46
>0-16 4 075 075 075 011 1-86 0-09 1-00 025
All 54 083 093 091 010 1-80 0-16 037 0-35

2Incidence of pods with white mould in 54 datasets used for constructing sequential sampling models.

°Number of datasets in each disease incidence class.

®Proportion of datasets in which the likelihood ratio test statistic was significant (P < 0-05).

9Proportion of datasets in which the C() (z-statistic) or D (chi-square) tests were significant (P < 0-05).

®Median estimated value of the beta-binomial distribution parameter B, index of dispersion D, and first-order autocorrelation statistic 7.
fPercentage of datasets in which runs analysis indicated significant aggregation. Ordinary runs analysis was based on 23 or two datasets in
the disease incidence classes >0:08-0-16 and >0-16, respectively, because runs could not be calculated in some instances since all

sampling units had at least one diseased pod.

Autocorrelation analyses

Significant first-order autocorrelation () of disease inci-
dence on pods was detected in 50% of the datasets, with
significant second-order autocorrelation in 44 % of data-
sets (Table 1). The frequency distribution of #; ranged
from —0-23 to 0-78 with median 0-16 (Fig. 1d). At
lag = 2, median #, was 0-15. Together, this indicates a
low but significant level of aggregation of disease inci-
dence in patches of about 1-1-5 m or greater.

Runs analyses

Significant aggregation was detected in 37% of the
datasets by median runs analysis and 35% of the
datasets where more than one run was present
(Table 1), again indicating some patches of disease
extending beyond the borders of individual sampling
units. There was a tendency for median runs analysis
to detect greater aggregation as disease incidence
increased.
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Figure 2 Frequency distribution of the beta-binomial distribution
parameters p (a) and 9(b), and the index of dispersion D (c) for the
incidence of bean pods with white mould (Sclerotinia sclerotiorum) in
Australian bean fields used for sampling model validation.

(a) Datasets from 109 fields; (b and c) 65 datasets where disease
incidence p> 0. Each vertical dashed line is the median value for the
indicated statistic, with the numerical value given on the graph.

Sequential sampling curves

Sequential estimation
Sequential estimation stop limits for estimating mean
incidence of pods with white mould and the correspond-
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Figure 3 Relationship between the logarithms of the observed
variance and binomial variance of the incidence of bean pods with
white mould (Sclerotinia sclerotiorum) in Tasmania, Australia in
model development datasets (a) and model validation datasets (b).
The solid line is the least squares regression fit to data from 2008
(»), 2009 (O) and 2010 (V); the dashed line represents a binomial
(random) distribution of disease incidence. Slope and intercept
parameter estimates are given in Table 2.

ing disease incidence at Ty are shown in Fig. 4a and Fig.
4Db, respectively, for C = 0-1, 0-2 and 0-3. As expected,
increasing sampling precision or decreasing disease inci-
dence resulted in a greater cumulative number of diseased
individuals before sampling could cease.

Simulated sampling validation
There were 65 validation datasets where p > 0. In these
datasets, estimates of disease incidence obtained by



Table 2 Estimated slope (b) and intercept parameters (In [A,
sclerotiorum) in commercial bean fields in Tasmania, Australia

S. J. Jones et al.

]) of the binary power law fitted to the incidence of bean pods with white mould (Sclerotinia

Model development datasets

Model validation datasets

Year df? b (SE)° n (A,) (SE)° R? dft b (SE)° In(Ay) (SE)° R?
2008 13 1:316 (0-156) 0-555 (0-084) 0-84
2009 16 0-947 (0-113) 0-511 (0-059) 0-82 32 1-166 (0-047) 0-649 (0-124) 095
2010 19 0-899 (0-226) 0-625 (0-090) 0-45 29 1-090 (0-033) 0-399 (0-095) 097
Al 52 1:045 (0-094) 0-557 (0-046) 0-70 63 1-127 (0-028) 0-525 (0-078) 0-96
adf = degrees of freedom for regression. A total of 54 datasets was used for constructing sequential sampling models.

PSE = standard error of the mean. Parameter estimates for the slope were not significantly different from 1 in any individual year or in the
combined analysis (P > 0-05) in the model development datasets, but were greater than 1 in the model validation datasets. Intercept
parameter estimates for the intercept parameter estimates were greater than 0 in all years and in the combined analyses (P < 0-0001).
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Figure 4 Sequential-estimation stop limits for estimating the mean
incidence of bean pods with white mould (Sclerotinia sclerotiorum)
with a coefficient of variation (C) of 0-1, 0-2 or 0-3. (a) Cumulative
number of diseased pods (Ty) versus the total number of sampling
units (N). (b) Mean disease incidence at critical Ty (the point where
the observed cumulative number of diseased pods crosses the
model Ty curve) in relation to N. Sampling ceases when the
cumulative number of diseased pods crosses the critical Ty in (a),
at which point mean disease incidence is then calculated as Ty/nN.

sequential sampling were very similar to the true disease
incidence (Fig. 5a,b). However, this may be artefactual
since the datasets were fully sampled (all 64 sampling

units), and thus p = p. Because of the small values of p,
achieving the prespecified level of precision was not possi-
ble in any of the 65 datasets where p > 0 when C was set
to 0-1 (Fig. 5¢), and only six of the 65 datasets when
C = 0-2 (Fig. 5). At C = 01, all 64 sampling units were
evaluated in all of the datasets, while all but three of the
datasets were completely sampled when C =02
(Fig. Se,f).

Bootstrapping evaluation

Bootstrap evaluation generally supported the observa-
tions of the simulated sampling. Disease incidence esti-
mates were imprecise when p was low. The achieved C
was greater than the prespecified C for datasets where
p <0-16 when C =01 (Fig. 6a) and p < 0-04 when
C = 0-2. The achieved C approached the prespecified C as
p increased, and the median achieved C was less than the
prespecified C for two datasets when C = 0-1, and six
datasets when C = 0-2, as a result of the minimum sam-
pling rule.

Although the prespecified precision was not attained in
some instances, the estimates of p — p included zero for
all datasets at both C = 0-1 and 0-2 (Fig. 6¢,d), indicating
that p was close to p for these datasets, but with the same
caveat as noted above. Confidence intervals generally
increased with increasing p because the sample size (N)
decreased with increasing p for both levels of C (Fig. 6e,f).
For C = 0-2, sample sizes were greatest for datasets where
p < 0-04 (datasets 1 to 3) and in these datasets estimated

p=Dp.

Sequential classification
Sequential classification stop lines for the six sequential
classification plans are shown (Fig. 7). Increasing « and f8
slightly reduced the distance between the stop lines
(Fig. 7a,b), but had little effect on the steepness of the OC
curves (Fig. 7¢,d). As expected, the choice of the threshold
p, was much more influential to the OC than the error
rates. The OC curve was flatter for the sampling plan with
p, = 0-15 than at lower values of p,, indicating a greater
classification error rate

Varying o and f had some effect on the ASN curves,
which was most evident when p was near p,, but again the
choice of p, was much more influential on ASN than the

Plant Pathology (2011)
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error rates. The ASN (rounded up to the nearest integer)
at p; = 0:03, 0-05 and 0-15 was 35, 48, and 21 sampling
units for a = f = 0-05, and 24, 31 and 16 sampling units
for o = f = 0-10, respectively (Fig. 7e,f). The ASN was
near or identical to the minimum sample size for all sam-
pling plans when p was far (> 0-10) from p,.

Simulated sampling validation

At the three values of p, and two combinations of error
rates evaluated, correct decisions regarding classification
of p were made at least 93% of the time when stop lines
were generated, assuming a random (binomial) distribu-
tion of disease incidence (Table 3). Fewer misclassifica-
tion errors occurred at the higher values of p;. On
average, 10-11-27 sampling units had to be evaluated to
classify a dataset, the former value being equal to the min-
imum sampling rule that was imposed.

Correct decisions were made more often when the stop
lines were generated assuming a beta-binomial (aggre-
gated) distribution of disease incidence (Table 3). How-
ever, the slightly higher correct decision rate came at the
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cost of assessing more sampling units, on average 10-:06—
15-03 in total, depending on p;.

Bootstrap evaluation

Again, changing p, had a greater effect on the OC and
ASN curves than did altering « and f. Increasing p;, flat-
tened the OC curve and decreased the ASN, indicating an
overall increase in the incorrect decision rate related to
collection of fewer samples (Fig. 8). Bootstrap evaluation
of the sampling plans indicated that the achieved OC and
ASN were similar to the OC and ASN curves obtained by
Monte Carlo simulation for the 12 datasets evaluated.

Discussion

This study has provided quantitative information on the
spatial characteristics of white mould epidemics in Aus-
tralian bean fields. Disease incidence varied widely both
between and within fields, with a median over the study
period of 8:4% in the model development datasets. The
incidence of pods with white mould was characterized by
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a largely random to slightly aggregated pattern of disease
incidence at the scale of individual plants, with some
patches of plants with similar disease levels on pods
occurring at a scale of 1 m or greater. There are several
biological processes that could result in such patterns.
Random patterns of disease are characteristic of highly
dispersible and/or well distributed inoculum (Turechek
& Mahaffee, 2004). Small patches of sampling units with
similar disease levels on pods were detected by correla-
tion-based analyses, particularly when disease incidence
was greater than on plants. Spatial analysis of the inci-
dence of bean plants with white mould, as opposed to

pods, was also conducted using disease data collected in
109 fields used for model validation, although that data
was not presented here because of space limitations.
However, that analysis indicated disease incidence was
more aggregated on plants, with § varying from 0 to 1:73
with median 0-11, and D varying from 0-78 to 6-81 with
median 1-96. Among the 80 fields where white mould
was observed on plants, the corresponding estimated bin-
ary power law slope, b, and intercept, In(A, ), parameters
were 1:254 (SE = 0:032) and 1-086 (SE = 0-064), respec-
tively. Although processes responsible for patterns
cannot be deduced conclusively from this analysis, the
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Figure 7 Stop lines for classifying the incidence of bean pods with white mould (Sclerotinia sclerotiorum) as above or below a critical
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small-scale aggregation on pods in the model develop-
ment datasets, but greater degree of aggregation on plants
observed in this study may suggest localized spread of
ascospores within bean fields. This is similar to the spatial
characteristics of sclerotinia stem rot in soyabean
(Gracia-Garza et al., 2002) and sclerotinia flower blight
in pyrethrum (Pethybridge et al., 2010). Similarly, the
absence of substantial inoculum contribution from as-
cospores outside the transect area of interest also suggests
that diseased pods would be more likely to be identified in
those areas of the fields where apothecia are found. Such
an association between localized occurrence of apothecia
and the incidence of pyrethrum flowers with sclerotinia
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flower blight was implied in this pathosystem (Pethy-
bridge et al., 2010). If inoculum is truly dispersed pre-
dominantly locally, this suggests that management
efforts should be directed at reducing primary inoculum
levels within individual fields, rather than focusing on a
farm- or regional scale. Designed experiments are needed
to test hypotheses on inoculum dispersal dynamics in this
environment.

Spatial analyses of the epidemics also provided the
foundation for developing statistically sound sampling
approaches for estimating disease incidence or classifying
disease incidence above or below the provisional industry
threshold for crop rejection. The sampling plans
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Table 3 Correct decision and error rates (proportion) of sequential classification plans for classifying the incidence of bean pods with white mould
(Sclerotinia sclerotiorum) above or below varying disease incidence thresholds (p;)

p: = 0-03° pr = 0-05 pr =015
o =005 p =01 o =005 p =01 o = 005 p =01
Binomial
Correct decision 0-93 0-93 096 095 1 1
Type | error 0-05 0-05 0-01 0-02 0 0
Type Il error 003 003 003 003 0 0
Type | or Il error 0-07 0-07 0-04 0-05 0 0
Mean N 11-27 10-40 11-26 10-53 10-06 10
Median N 10 10 10 10 10 10
Beta-binomial
Correct decision 095 095 098 098 099 1
Type | error 002 002 0-00 0-00 001 0
Type Il error 0-03 0-03 0-02 0-02 0 0
Type | or Il error 0-05 0-05 0-02 0-02 0-01 0
Mean N 15-03 12:02 14-86 11-95 10-21 10-06
Median N 12 10 12 10 10 10

2Type | error indicates that mean disease incidence was incorrectly classified as >p;; type Il error indicates that mean disease incidence was
incorrectly classified as <p;, where p; is a critical value of disease incidence. Mean and median N were calculated from all 109 model
validation datasets. The parameters o and 8 were specified to control type | and type Il error rates, respectively.
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Figure 8 (a, b and c) Operating characteristic (OC) and (d, e and f) average sample number (ASN) curves for sequential classification
sampling plans as determined by Wald’s sequential probability ratio test for the incidence of bean pods with white mould (Sclerotinia
sclerotiorum). Threshold values are: (a and d) po = 0-01, p; = 0-05 and p; = 0-03; (b and e) py = 0-03, p; = 0-07 and p; = 0-05; and (c and f),
po = 0:088, p; = 0214 and p; = 0-15. OC and ASN curves were determined by 1000 Monte Carlo simulations with the parameter a function of
the mean disease incidence according to the binary power law, where a = 0:194 and b = 1-:045. Curves with error probabilities of o = = 0-05
(solid line) and o = = 0-10 (dot-dashed line) are shown. Circles are the achieved OC and ASN from 100 bootstrap simulations of sequential
sampling for classification of 12 model development datasets; open circles are simulations where o« = = 0-05, and solid circles are
simulations where « = = 0-10. The 12 datasets were chosen by selecting three datasets randomly from each of four disease incidence
classes (0-02 < p < 0-04, 0-04 < p < 0-08, < 008 < p < 0-16, and p > 0-16) from among the 54 model development datasets.
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developed in this research were not intended to inform
decisions regarding application of control measures for
the reasons discussed previously. Rather, the sampling
plans were designed to quantify disease incidence on pods
near harvest. The sequential estimation sampling plans
tended to perform appropriately when disease incidence
was at least 4%, which is near the provisional thresholds
sometimes used by processors for crop rejection. To
achieve a highly precise estimate of disease incidence
(C = 0-1), over 100 plants, with 10 pods sampled on each
plant, would need to be evaluated when disease incidence
is <8%. When precision requirements can be relaxed
(C = 0-2), the number of plants that need to be evaluated
decreases with increasing disease incidence, to as few as
10. Given the stringent industry standards for white
mould incidence on pods and practical considerations of
the labour needed to conduct disease assessments, a lower
level of precision, e.g. C = 0-3, may need to be accepted to
feasibly implement a sequential estimation plan.

For pest management, often only a classification of dis-
ease or pest status above or below some critical value for
decision making is needed (Binns & Nyrop, 1992; Binns
et al., 2000). When only a classification of disease inci-
dence is required, for research purposes or otherwise, the
sequential classification plans developed herein appeared
to provide a very useful tool for accurately classifying
fields after inspection of relatively few sampling units.
The sequential classification plans enabled disease inci-
dence on pods to be classified correctly in at least 95 % of
fields after sampling only 10-15 plants.

The average sample size could be reduced even further
by relaxing the minimum sampling rule of 10 plants used
in the sampling plans developed here. White mould tends
to be aggregated at scales larger than those considered in
the current study, such as in low-lying areas or microcli-
mates that favour extended periods of wetness on plants.
Thus, the present study used a relatively stringent mini-
mum sampling rule to increase the chance that such areas
could be sampled. In practice, portions of fields with
recurrent white mould may be the first areas where sam-
pling should begin. Such ‘targeted sampling” would mini-
mize the risk of type Il errors (i.e. incorrectly classifying a
field as having disease incidence less than the disease
threshold), which are probably more important to pro-
cessors than type Lerrors.

A potential source of error in these studies is the
assumption that disease assessments based on samples
collected by research personnel are congruent with dis-
ease assessments by users of the sampling plans. Although
estimates of disease incidence by the authors were corre-
lated with disease incidence estimates by a co-operating
processor, the former tended to to be greater than the lat-
ter. This may have been caused by differences in sampling
scales (i.e. from across the field compared to estimates
from truckloads), or from a proportion of bean pods
infected by S. sclerotiorum being less robust (rotten) and
broken up and left in the field during the harvesting pro-
cess. The sequential sampling plan that used a classifica-
tion threshold of 0-15 was designed to be calibrated,
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approximately, to what a processor may deem as 0-05
incidence of diseased pods. Although the OC curve was
not as steep, indicating classification errors, this sampling
plan performed adequately during validation. Correct
decisions on disease status above or below the processor
threshold were made at least 99% of the time after evalu-
ation of, on average, only 10 plants. Given that assess-
ment of white mould on pods can be very time
consuming, implementation of one of the sampling plans
developed in this work could substantially improve the
efficiency and perhaps precision of current sampling
methods.
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